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Abstract

In this paper, we analyze the behavior of communication
networks in which packets are generated dynamically at the
nodes and routed in discrete time steps across the edges. We
focus on a basic adversarial model of packet generation and
path determination for which the time—averaged injection
rate of packets requiring the use of any edge is limited to be
less than 1. A crucial issue that arises in such a setting is
that of stability — will the number of packets in the system
remain bounded, as the system runs for an arbitrarily long
period of time?

Among other things, we show:

(i) There exist simple greedy protocols that are stable for
all networks.

(ii) There exist other commonly—used protocols (such as
FIFO) and networks (such as arrays and hypercubes)
that are not stable.

(iii) The n—node ring is stable for all greedy routing proto-
cols (with maximum queue-size and packet delay that
is linear in n).

(iv) There exists a simple distributed randomized greedy
protocol that is stable for all networks and requires
only polynomial queue size.

Our results resolve several questions posed by Borodin et

al., and provide the first examples of (i) a protocol that is

stable for all networks, and (ii) a protocol that is not stable
for all networks.

*Supported by Army grant DAAH04-95-1-0607 and ARPA contract
NO00014-95-1-1246.

tLaboratory for Computer Science, MIT. Supported by NSF contract
9302476-CCR.

! Department of Computer Science, Johns Hopkins University.

§Laboratory for Computer Science, MIT. On leave from the Dpto. de
Arquit. y Tecnol. de Computadores, Univ. Politécnica de Madrid. Sup-
ported in part by the Spanish Ministry of Education.

% Lab Computer Science, MIT. Supported by an ONR Graduate Fellow-
ship. Present address: Department of Computer Science, Cornell Univer-
sity. On leave at IBM Almaden Research Center.

W Department of Mathematics and Lab for Computer Science, MIT.

**Laboratory for Computer Science, MIT. On leave from Institute of
Computing Technology, Academia Sinica, Beijing, China. Supported in
part by K. C. Wong Education Foundation, Hong Kong.

0272-5428/96 $05.00 © 1996 IEEE

Baruch Awerbuch?

380

Antonio Ferndndez? Jon Kleinberg T

Zhiyong Liu™*

1. Introduction

We study the behavior of communication networks in
which packets are generated dynamically at the nodes and
routed in discrete time steps across the edges. A crucial is-
sue that arises in such a setting is that of stability — will the
number of packets in the system remain bounded, as the sys-
tem runs for an arbitrarily long period of time? The answer
to this question typically depends on the rate at which pack-
ets are injected into the system, and on the contention resolu-
tion protocol that is used when more than one packet wants
to cross a given edge in a single time step.

These issues have been investigated in a number of over-
lapping areas. Within the context of packet routing, there
has been recent work focusing on the problem of stability in
common interconnection networks; typically, this work as-
sumes that packets are generated according to independent
Poisson or Bernoulli processes at the nodes, and they must
be routed to random destinations [14, 20, 15, 8, 10, 9, 4, 19,
5). Inrelated work, Awerbuch and Leighton [1] presented
a stable packet-routing algorithm that could be used to pro-
vide a local—control approximation for the multicommodity
flow problem. The problem of continuous packet injection
and routing has also been a major topic of study within the
field of queueing theory [12, 11]. Typical assumptions here
are that packets are generated according to a Poisson pro-
cess, and that the time to traverse an edge is an exponen-
tially distributed random variable, rather than a fixed con-
stant. See [2] for a review of previous work on these mod-
els.

In this paper, we work within a model of continuous
packet injection proposed by Borodin et al. [2], in which
probabilistic assumptions are replaced by worst—case inputs.
The underlying goal is to determine whether it is feasible
to prove stability results even when packets are injected by
an adversary, rather than an oblivious randomized process.
The framework was termed adversarial queueing theory in
[2], to reflect the fact that the emphasis is on stabiliry — the
central issue of queueing theory — with respect to an adver-
sarial model of packet generation and path determination.

The model of [2] considers the time evolution of a



packet—routing network as a game between an adversary
and a protocol. In each time step, the adversary injects a
set of packets at some of the nodes; for each packet it spec-
ifies a sequence of edges that it must traverse, after which
the packet will be absorbed. If more than one packet wishes
to cross an edge e in the current time step, then the protocol
chooses one of these packets to send across e; the remainder
of these packets wait in a queue at the tail of e. This game
then advances to the next time step. The protocol is said to
be stable against the adversary if there is a constant C' (pos-
sibly depending on the underlying network) so that there are
never more than C' unabsorbed packets in the system, re-
gardless of how long the game is played. In this paper, as
in [2], we will only consider greedy protocols — those that
advance a packet across an edge e whenever there is at least
one packet waiting to use e.

A crucial parameter of the adversary is its raze. Borodin
et al. defined a single request by the adversary to be a set of
packets requesting edge—disjoint paths; in their terminology,
an adversary injects at rate r if for all ¢, no more than [7¢]
requests are made in any interval of ¢ steps. Among other re-
sults, Borodin et al. showed that against any adversary with
rate at most 1, (i) any greedy protocol is stable on any DAG,
and (ii) the Farthest-to-Go protocol is stable on the ring.

A different but related model of worst-case packet injec-
tion was proposed in earlier work of Cruz [6, 7]. In this
model, one assumes that packets are injected by k sessions,
each with a fixed path and a fixed rate (with some bursti-
ness allowed), subject to the requirement that the total rate
of all sessions using a given edge is strictly less than 1.
Cruz proves the stability of every greedy protocol on every
layered DAG [7]; Tassiulas and Georgiadis [21] also work
within this model, and show that every greedy protocol on
the ring is stable. Any set of k sessions in Cruz’s model cor-
responds to an adversary of rate strictly less than 1 in the
model of Borodin et al.; hence a stability result in the latter
model implies an analogous result in the former. However,
the converse direction does not hold: there exist adversaries
in the model of Borodin et al. that cannot be captured by the
framework of Cruz. (For example, one needs the more gen-
eral model of [2] to represent connections of limited dura-
tion.)

In recent related work, Rabani and Tardos [16] developed
a randomized algorithm for static routing problems, and ap-
plied it to dynamic problems. They obtain an algorithm
with the following performance guarantee in the model of
Borodinetal.: against any adversary of rate strictly less than
1 (with some burstiness allowed), every packet is absorbed
in a polynomial number of steps with high probability. Their
algorithm is different from those we consider here in that it
is not greedy and it allows packets to be discarded: the al-
gorithm is allowed to pre-emptively remove a packet from
the system with inverse polynomial probability.

A number of fundamental open questions were raised in
[2] concerning the relationship between rate and stability. In
particular they asked,

(1) Is any greedy protocol stable against every adversary
of rate less than 1, for every network?

(ii) Is any greedy protocol stable with small queue size
against every adversary of rate less than 1, for every
network?

(iii) Does the n—node unidirectional ring have the property
that every greedy protocol is stable against every ad-
versary of rate less than 1?

(iv) Does every network have this property (namely that ev-
ery greedy protocol is stable against every adversary of
rate less than 17)

These questions highlighta very basic algorithmic question:

when is a given contention resolution protocol stable in a

given network, against a given adversary? More specifi-

cally, the questions are based on the following definitions,
which will be central to the work we do here.

Definition 1.1 We say that a graph G is universally stable
if every greedy protocol is stable against every adversary of
rate less than 1 on G.

Definition 1.2 We say that protocol P is universally stable
if it is stable against every adversary of rate less than 1, on
every network.

We noted above that [2] showed directed acyclic graphs to
be universally stable; but for graphs with directed cycles, the
following two extremes were both left open as possibilities:
(a) every graph is universally stable; or (b) no graph con-
taining a directed cycle is universally stable. It was also left
open whether or not any or all greedy protocols are univer-
sally stable.

1.1. Our results

In this paper, we resolve the open questions of [2] de-
scribed above, and provide additional results on stability. In
particular, we show that

(i) There exist commonly-used simple greedy protocols
that are universally stable.

(ii) There exists a simple distributed randomized greedy
protocol that is universally stable with a bound on
queue size that is polynomial in d log m, where d is the
maximum path length and m is the number of edges in
the network. For many common networks, this bound
is therefore polylogarithmic.

(iii) The n—node ring is universally stable, with maximum
queue-size and maximum delay that is linear (in n).

(iv) There exist commonly-used graphs and protocols that

are not universally stable.



Our universal stability results (i), (i1), and (iii) hold for a
broader class of bounded adversaries, which we define as
follows. The rate of an adversary in our work will be spec-
ified by a pair (w, 7), where w is a natural number and 0 <
r < 1. The requirement on the adversary is the following:
of the packets that the adversary injects in any interval of w
steps, at most 7w can have paths that contain any one edge.
Such a model allows for adversarial injection patterns that
are “bursty,” since our rate restriction holds only in an amor-
tized sense. In one time step, an adversary can inject a large
number of packets that all request the same edge, provided
simply that this does not result in more than rw packets re-
questing this edge over an interval of w steps.

We first show that several natural protocols are uni-
versally stable; we will refer to them as Farthest-to-Go
(FTG), Longest-in-System (LIS), and Shortest-in-System
(SIS). FTG gives precedence to a packet whose distance
to its destination is maximal; LIS gives precedence to the
packet injected the earliest; and SIS gives precedence to the
packet most recently injected.

Although these protocols are stable, we show that two
of them (FTG and SIS) can require queues of exponential
size in the worst case. For the third protocol, LIS, the best
upper bound on queue size that we can show is exponen-
tial, though we do not know of a matching lower bound.
Thus it is natural to ask whether there exists a protocol with
queues of polynomial size. We show that there is a simple
distributed randomized protocol with a polynomial bound
on queue size; as is standard, we say that arandomized algo-
rithm in this setting is polynomially bounded if the probabil-
ity of its having a large queue at any point in time is expo-
nentially small. Our algorithm is based on the Longest-in-
System priority rule, with random perturbations, and it has
a very simple local-control implementation.

Our examples of instability (result (iv) above) hold even
for an adversary that injects at most one set of disjoint paths
in each time step. The greedy protocols that turn out to be
unstable are FIFO, LIFO, and Nearest—to-Go (NTG). FIFO
and LIFO maintain the edge queues in First-in-First-outand
Last-in-First-out order respectively; the NTG protocol al-
ways advances a packet whose distance to its destination is
minimal. The FIFO protocol is widely used and NTG has
at times been proposed for routing in array—based parallel
machines. Curiously, we show that these protocols can be
unstable on many common networks, including arrays and

hypercubes.

We mentioned above that universal stability is a very
basic algorithmic problem for graphs; hence we have the
following natural question: Given a graph G, is it univer-
sally stable? Our results (iii) and (iv) above show the non—
triviality of universal stability as a property; and it is not ini-
tially clear that it should even be a decidable property, since
it is asking whether every greedy protocol is stable against
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every bounded adversary on G. For undirected graphs with
bi—directional edges, however, we show that universal sta-
bility is a decidable property; and in fact it can be decided in
polynomial time. To prove this, we show that the set of uni-
versally stable graphs is closed under the taking of minors;
polynomial-time decidability then follows from results of
Robertson and Seymour [17, 18].

1.2. Preliminaries

Itis straightforward to formalize the model we have been
discussing above. In every time step ¢, the current configu-
ration C' of the system is a collection of sets {S? : e € G},
such that ST is the set of packets waiting in the queue for e at
the end of step ¢. From the configuration C*, we obtain the
configuration C'+1 for the next time step as follows. (1) We
add new packets to some of the sets S, each of which has an
assigned path in G; and (2) for each non-empty set S¢, we
delete a single packet p € S? (as specified by a contention—
resolution protocol) and insert it into the set SiT*, where f
is the edge following e on its assigned path. (If e is the last
edge on the path of p, then p is not inserted into any set.) A
time—evolution of G, of rate (w, r), is simply a sequence of
such configurations C', C2, . ., such that for all edges ¢ and
all intervals I of w consecutive steps, no more than rw pack-
ets are introduced during I with an assigned path containing
e.

In this version of the paper, however, we prefer to keep
the definitions slightly informal for the sake of readability.
We therefore will phrase results in terms of an adversary that
adds packets to the system, and a protocol that moves pack-
ets across edges. By the system (G, A, P) we simply mean
the time—evolution of G induced by adversary A and proto-
col P. We view each time step ¢ of this system as consisting
of three phases.

(1) Packets are injected by A.

(i1) Packets are moved by P.

(iii) Packets that reach their destinations in phase (ii) are
absorbed.

Finally, we give some additional definitions.

Definition 1.3 A packet is said to require an edge e at time
t if e lies on the path from its position at time t to its desti-
nation.

For simplicity in this version, we will assume that when a
packet is injected, its assigned path is simple; namely, it does
not contain any edge more than once. Itis notdifficult, how-
ever, to remove this assumption.

Definition 1.4 We say that A is a bounded adversary, of
rate (w, r), if for all e and all intervals I of w consecutive
steps, it injects no more than rw packets during I that re-
quire e at their time of injection.



In the sequel we shall speak in terms of both the maxi-
mum number of packets in the system and the maximum de-
lay (i.e. time until absorption). The following result shows
that there is a close relation between the two quantities; we
omit the proof, which is not difficult.

Theorem 1.5 Let (G, A, P) be a system, where G is a
graph with m edges, P is any greedy protocol, and A is an
adversary of rate (w,1 — €), 0 < € < 1. Suppose there are
never more than k packets in the system at the same time,
where k > w. Then any packet which is injected with a path
of length d will be absorbed in at most 2kde =" steps. Con-
versely, if the maximum delay experienced by any packet is
at most r, then there are never more than mr packets in the
system at the same time.

2. Universal stability of protocols

In this section we focus on the issue of universal stability
for protocols: given a contention resolution protocol P, is it
stable on every network G, against every bounded adversary
A? We first present three simple protocols for which the an-
swer is affirmative. Our upper bounds for all these protocols
are exponential in the maximum path length d; thus, while
the bounds are large in general, they are fairly good when
all packets require only short paths. (In Section 4.2, we will
present a randomized protocol with a bound on queue size
that is polynomial in dlogm.) After our upper bounds, we
show in Section 2.2 that several simple and very common
protocols are not universally stable.

2.1. Universally stable protocols

SIS is universally stable

Theorem 2.1 Let G be a directed network, and A a
bounded adversary of rate (w,1 — ¢), withe > 0. Then
the system (G, A, S15) is stable.

Proof. Let p be a packet in the system (G, A, SIS) at time
step t, waiting in a queue at the tail of edge e, and suppose
that there are currently & other packets in the system requir-
ing e that have priority over p. Let &' > k be a multiple of
w. We claim that p will cross e within the next k?, steps. For

if not, then a distinct packet crosses e in each of the next k?l
steps. But any packet in the system during this time that has
priority over p, and requires edge e, must either be one of the
k packets existing at time %, or one of the (at most) ’Z—'(l —€)
packets requiring e that were injected during this time. Thus
at most k + k?'(l —g) < ’“E—] have priority over p during this
time, a contradiction.

We define 7 = w(l — ¢), and numbets k;, k2, . .. by the
recurrence k1 = 3, kj41 = € 1k; + Be~!. Now, by in-
duction, we claim that when p arrives at the queue of the j**
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edge e; on its path, the following holds: for every edge e on
the path of p, there are at most k; packets requiring e with
priority over p. This holds for j = 1, since for any edge e,
the only packets requiring e that initially could have priority
over p are the (at most) 8 = w(1—¢) packets injected in the
same time step as p. Now, suppose that the claim holds for
some j. Then by the above argument, p will arrive at the tail
of ¢; 41 inanother @ steps, during which time at most an-
other (1 —¢) wt—k’ packets requiring any edge e arrive with
priority over p. Thus, when p arrives at the tail of e; 41, at
most k.
b+ (1- )2
packets requiring an edge e have priority over p, and hence
the claim holds.

Finally, let m be the number of edges and d the length of
the longest simple directed path in G, we claim that there are
at most m(kq + 1) packets ever in the system. For if there
were ever m(kq + 1) + 1 packets, then there would be a set
of ks + 2 packets all requiring the same edge; the one of
these with the lowest priority would contradict the claim of
the previous paragraph. n

= kjq1

LIS is universally stable

Let us denote as class { the set of packets injected in step [.
A class [ is said to be active at the end of step ¢ if and only if
at that time there is some packet in the system of class I’ < [.
Consider now some packet p, injected at time 7y, and whose
path crosses edges e, €1, ..., €4, in this order. We use 1; to
denote the step in which p crosses edge e;, and ¢ to denote
some step in [Ty, Tq). Let ¢; denote the number of active
classes at the end of step ¢, and define ¢ = maxi¢[r, T,) Ct-

Lemma22 T; —Tp < (e+w)(1 - 5(1) + 11__5;'

Proof. The packet p reaches the tail of edge ¢; at time T; 4.
Since p is still in the system, all classes in [Tp, T; 1] are ac-
tive at the end of that step. Thus, from the definition of e,
there are at most ¢ — (Z;_1 — Tp) active classes of packets
that can block p in the queue of e;. All the packets in these
classes were injected in consecutive steps, and hence at most
[(c+To—T;—1)/w|(l—e)w < (1—¢)(e+To—~T;—1 +w)
packets can block p. Therefore,

T <elioi+(1—¢e)c+w+To)+ 1.

Thus, solving the recurrence, we obtain

d-1

Ty < (L=e)(ctw+To)+1)Y & +eTp
1=0
q 1—ed
= (C+w)(l—“€)+ 1—¢ +f0

and the claim follows.



Theorem 2.3 There are never more than —2Ei< active
ed(1-¢)

classes in the system (G, A, L1S), where d is the length of
the longest simple directed path in G.

Proof. Letc = ﬁl‘e‘) and assume that the end of step £ is
the first time there are exactly ¢ + 1 active classes. Hence,
at the end of step ¢ there are packets that have been in the
system for ¢ + 1 steps, and during the first ¢ of these steps
no more than ¢ classes were active.

However, from the above lemma, any packet that has at
most ¢ active classes while in the system (except, maybe, the
last step), is absorbed in at most

4 1—ed
(c+w)(1—e%)+ 1_F+1
—(1—¢¢ —
_ c+1_w+1 (1 15_)(:1(1 e)+1)

steps. Since 1 — % < land 1 — & < 1, the last term is
negative, the number of steps is smaller than ¢ + 1, and we
reach a contradiction. |

Corollary 2.4 Let G be a directed network, and A an ad-
versary of rate (w,1 — ¢), withe > 0. Then, the system
(G, A, LIS) is stable, there are never more than O(%4f)
packets in the system and the maximum number of steps any
packet spends in the system is O(2), where d is the length
of the longest simple directed path in G.

FTG is universally stable

Theorem 2.5 Let G be a directed network, and A a
bounded adversary of rate (w,1 — ¢), withe > 0. Then
the system (G, A, FTG) is stable.

Proof. We prove by a backwards induction that this protocol
is stable. Let m be the number of edges and d be the length
of the longest simple directed path in the graph . Let us
define k; =0 for? > dand k; = msz‘ kj + muw(l —¢)
for 1 < ¢ < d. We claim that for all j > ¢ the number of
packets in the system that still have to cross exactly j edges
is at most k;.

This.is trivial for j > d since each packet has to cross
at most d edges. Now consider a particular edge e and let
X;(t) be the set of packets in the queue of e that still have
to cross at least 1 edges at time ¢. Let ¢ be the current time,
and let ¢ be the most recent time step preceding ¢ in which
Xi(t') was empty. Any packetin X;(t) must either have had
atleast i+ 1 edges to cross at time ¢’ or else it must have been
injected after time . But, from the definition of the proto-
col, at every step ¢/ between times ¢’ and ¢ a packet from
X;(t"") must have been chosen to cross edge e. Hence, by
the inductive hypothesis,

t—1
=

X)) < D ki+

j>1

Jua-a-e-v)
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< Y kitw(l—e)—e(t=t).
i>1

The above inequalities have two consequences. First, the
number of packets in the system that still have to cross ¢
edges is always at most m ZJ'>2' kj +mw(l —¢) = k; and
so the inductive step holds. Second, ¢ — ¢’ cannot be greater
than ‘:'(ij' kj + w(1 — ¢)). Hence this expression gives
the maximum amount of time that a packet with ¢ edges still
to cross can remain in a queue. Therefore under FTG the
maximum number of packets in the system is bounded by
> i>1 k; and the maximum amount of time that any packet
spends in the system is bounded by k1 /¢. |

2.2. Protocols that are not universally stable

In this section we show the instability of commonly-used
protocols (namely, FIFO, NTG, and LIFO) on simple net-
works, thus proving that these protocols are not universally
stable.

For lower bounds of the type we are interested in obtain-
ing in this section, it is advantageous to have an adversary
that is as weak as possible. Thus, for the purposes of this
section, we say that an adversary .4 has rate » if for every
t > 1, every interval [ of ¢ steps, and every edge e, it injects
no more than [rt] packets during I that require e at the time
of their injection.

We will present our lower bounds for systems that start
from a non-empty initial configuration. This implies insta-
bility results for systems with an empty initial configuration,
by the following simple lemma.

Lemma 2.6 Let G be a graph, P be a greedy protocol, and
A an adversary of rate v, and suppose the system (G, A, P)
is unstable starting with some non—empty initial configura-
tion. Then, there exists a system (G', A’ P) that is unstable
starting with an empty initial configuration, where A’ is an
adversary of rate r.

Now, we define the graph G to be a four-node directed
cycle, with vertices vg, wo, v1, w1, and two parallel edges
between w; and vi_;. (G has edges e; from v; to w;, and
edges f;, f] from w; to vi_;.)

Theorem 2.7 Letr > 0.85. There is an adversary A of rate
r such that (G, A, FI1FO) is unstable, starting from a non—
empty initial configuration.

Proof. We break the construction of A into phases. Our in-
duction hypothesis will be as follows: at the beginning of
phase j, there will be j packets in the queue of e; requir-
ing to cross edges e; and f;, for¢ = 0 or 1 (depending on
whether j is even or odd).

To start out, however, we need sq packets queued at node
vg, for a large enough constant so. Thus the induction hy-
pothesis for phase 0 is certainly met. For a general phase j



(suppose j is even), we will show that if at the beginning of j
the queue of eg contains a set S of s packets requiring edges
eofo, then at the start of phase j + 1, there will be at least
s + 1 packets in the queue of e; requiring edges e fi.

The sequence of injections in phase j is as follows. For
simplicity, we will omit floors and ceilings; by carrying
these through the computations one loses some additive con-
stants, which are offset by the fact that sy was a large con-
stant.

(1) For the first s steps, we inject a set X of rs packets
that want to traverse edges eq fe1 f1. These are blocked by
the packets in 5.

We also hold up the sequence of packets in .S at the tail of
fo, using single—edge injections. The newly injected pack-
ets get mixed with those of S into the set S’. However, these
single—edge injections can only be made at rate r, and so the
number of packets of S’ that are queued at the tail of fj at
the end of the first s steps is only rs.

(2) For the next rs steps, we inject aset Y of r2s packets
that want to traverse edges foeq f1. These are blocked by the
packets in .S,

We also delay the flow of packets in X though f, using
single-edge injections. The new packets get mixed with the
packets in X. In the process, rs/(r + 1) packets of X cross
f§ and the size of X shrinks to r2s/(r + 1).

(3) For the next r?s steps the packets in X and Y move
forward, and merge at v;. At the same time, 73s new packets
that want to traverse edges ey f1 are injected in v;. Since r%s
packets cross ey, after these 725 steps the queue of e; con-
tains r3s + r?s/(r + 1) packets. This ends phase j. Since
73 +72/(r 4 1) > 1, we meet the induction hypothesis for
phase j + 1. |

An adversary similar to the one described above can be
used to prove the instability of the NTG protocol on the net-
work G at any rate r > 1/+/2. By slightly modifying the
network, one can also show the instability of the LIFO proto-
col. Moreover, all these constructions can be generalized to
larger ring-based networks; the resulting systems show that
FIFO can be made unstable at any rate » > 0.798, and that
NTG and LIFO can be made unstable at any rate » > 0.62.

We will show in Section 3.2 that these instability results
also hold for any network that topologically contains any of
the graphs used here. This includes k~dimensional arrays,
hypercubes, and most other common networks except trees
and cycles. As a consequence, we can conclude that FIFO,
NTG, and LIFO are unstable for all these networks.

3. Universal stability of networks

‘We now consider the universal stability of networks. We
begin our study with the case of the n-node ring, since it
is situated between the class of directed acyclic graphs —
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which are known to be universally stable by a result of [2]
—and the simple cyclic graphs of Section 2.2, which are not
universally stable. Thus, it is natural to ask whether there is
any universally stable network that contains a directed cy-
cle. In what follows, we establish that cyclicity itself is not
the obstacle, by showing that the ring is universally stable.

A natural next question is whether one can characterize
the set of universally stable graphs. We show that for undi-
rected graphs, there is a polynomial-time algorithm that de-
cides universal stability.

3.1. The ring is universally stable

Let G denote the n-node ring. We use the numbers
1,...,n to denote the edges, and v; to denote the queue at
the tail of edge 7. Fix arbitrary w > 0 and £ > 0. Our goal
is to show that any greedy queueing discipline P is stable
against any adversary of rate (w, 1 — €).

We begin by developing some general facts about the be-
havior of P. Let us consider some packet p in the system
(G, A,P). We suppose it was injected in step Tp, at node
vi,, with destination n. Let 7” be some time at which it has
not yet been absorbed, with 77 — T > w. (If there is no
packet for which such times Ty, 7" exist, then all packets are
absorbed within w steps, and the system is clearly stable.)
Let vy, - .., vio+r be the nodes through which p passes in
the interval [To, T']. We write ¢y = do+k. Fork =0,...,7,
let T, denote the time at which p first reaches v;, (i.e. when
it crosses edge 7o + k — 1, if & > 0); by abuse of notation,
we will also write Tr41 = T".

By the definition of the edges %o, . . ., ¢, we have

Lemma 3.1 For each k 0,...,r, and each t €

[T%, Tk+1], some packet crosses edge iy, in step t.

For j anedge of G, and t € [Ty, T"], we define P;; to be
the number of packets in G at the end of step ¢ that require
edge j. Note the following basic property of F; ;.

Lemma 3.2 Lett andt' be such thatt’ <t <t +w. Then
Pj ¢ < Pju+w(l—¢)—z, where z is the number of packets
that cross edge j in the interval (1, ).

We define @ = maxjeg, te[r,,7') £ ¢- For j and ¢ as
before, we now define the function f(j,1) = @ — &(t —
Ty) + w(l + j — 1p). We note the following properties of
this function f.

Lemma33 (i) f(j,t+ 1) = f(j,t) — e
(i) f(G+1,1) = f(4, 1) + w.

Definition 3.4 If j is an edge of G and t is a time step, we
say that the pair (j,t) is applicable if either

o j = iy for some k, and t € [Ty, Ty+1], or

e j>i.andt € [Ty, T"].



Note the following basic property of applicability.

Lemma 3.5 If(j,t) is applicable and (j — 1,1) is not, then
j =iy for some k, andt € (Ty, Ty 41].

The crux of our analysis is the following lemma.

Lemma 3.6 For all applicable pairs (j,t), we have P; ; <

Proof. We prove the lemma by induction on j > 4, and for
fixed j by induction on ¢. First, the basis of the induction for
any fixed j is easily proved as follows: if (§, t) is applicable,
andt < Tp + w, then f(j,1) > Q@ —ew + w > @, and by
assumption we have Pj; < @ forall¢ € [Ty, Tp + w] C
(T, T").

Now, consider any applicable pair (j,1), witht > Ty +
w. If for the past w consecutive steps, a packet has crossed
edge j in each step, then by Lemmas 3.2 and 3.3, and the
induction hypothesis, we have

Pj,t < Pj,t-w + w(l - 6) —w
< Pjiw —ew < f(j,t —w) —ew = f(j,1).

Otherwise, there is a step ¢’ € (¢t - w, t] in which no packet
crosses edge j. Note that the pair (7, ') is applicable. We
claim that in this case the pair (j — 1,’) is also applicable.
For suppose not; then by Lemma 3.5, j = i) for some &, and
t' € (Tg,Tx+1] — but this contradicts Lemma 3.1. Thus,
(j - 1,%) is applicable, and so is (j — 1,t' — 1). Since P
is greedy, the node v; is empty at the end of step ' — 1, and
hence Pj_1,-1 > Pjv—1. Again applying Lemmas 3.2
and 3.3, and the induction hypothesis, we have

Pip < Pooi+w(l—¢) < Pioyp+w(l—e¢)
<fG-1t-D+wl-2)=fUl-1)—ew
<fUY -1 —et =t + 1) =f(,t). m

Using this lemma, we now prove the main two results of
this section.

Theorem 3.7 (G, A, P) is stable, and there are never more
than ®2 packets in the system that require any given edge.

Proof. The second statement implies the first, so we will
concentrate on proving the second statement. Set @ = =2,
and suppose that the theorem is not true. Let 7" be the first
time at which @ + 1 packets in the system require a given
edge, say edge n; let Ty < T” denote the time at which the
first of these was injected. Note that, from Definition 1.4,
in 77 — Ty steps at most [(T" — Tp)/w](1 — ¢)w pack-
ets can be injected requiring any edge. Therefore, @ <
(T —To)/wl(l—¢e)w < (T"—Tp)/w+1)(1 —¢)w, and
hence

T'-Ty > Q/(1—e)~w > Q+eQ—w = Q+nw—w > Q.
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By our assumption we have Q < P, 7/, and by
Lemma 3.6, we have P, 7 < f(n,T"). Butsince 7" —Ty >
@, we have

f(n, T = Q—e(T"—To)+w(l+n—ip) < Q—cQ+wn = @,

a contradiction. L
The proof of the following theorem is analogous, and we
omit it.

Theorem 3.8 The maximum number of steps a packet
spends in the system is O(wne™?2).

3.2. Deciding universal stability of networks

In Sections 3.1 and 2.2, we have seen that the property
of universal stability holds for some graphs, but not for oth-
ers. We therefore turn to the problem of characterizing those
graphs which are universally stable. Initially, it is not at all
clear that universal stability should be a decidable property,
since we are implicitly quantifying over all adversaries and
all protocols. However, we can show that the property of
universal stability is closed with respect to the minor inclu-
sion relation on graphs; the proof is somewhat lengthy, and
we omit it in this version. By results of Robertson and Sey-
mour, this fact implies that the set of graphs that are not uni-
versally stable has only finitely many minor-minimal ele-
ments. Moreover, the results of Section 2.2 imply that not
all planar graphs are universally stable; by [17, 18], we have
the following.

Theorem 3.9 There is an algorithm with running time
O(n?) that decides if a graph is universally stable.

4. Bounds on queue size for universally stable
protocols

The maximum gueue size required by a queueing pro-
tocol is one of the main parameters determining its perfor-
mance. The issue of stability asks whether this parameter
can become unbounded; but among universally stable proto-
cols, it is important to identify those that maintain the small-
est possible queues. Ideally we would like to have a protocol
that never holds more than a constant number of packets in
any queue. However, since we are dealing with adversarial
packet injection, itis easy to construct examples of networks
and adversaries for which any greedy protocol will require
queues of super-constant size.

Now, it is interesting to observe that for all three of the
universally stable protocols presented in Section 2.1, we
have only been able to show exponential upper bounds on
the maximum queue size. In this section we show that two



of the protocols presented there actually require exponential
queue size, for some network G and some adversary A.

In Section 4.2, we then present a simple dsitributed ran-
domized greedy protocol that requires only polynomially
bounded queues, with high probability.

4.1. SIS and FTG require exponential queue size

We now show that under the protocols SIS and FTG the
queue sizes can become exponential. We present a proof of
this result for SIS; the proof for FTG is very similar.

In order to make the result more general, we use the type
of adversary considered in Section 2.2. We say that an ad-
versary A has rate 1 —¢, if forevery ¢ > 1, every interval I of
t steps, and every edge ¢, A injects no more than [(1 — €)¢]
packets during [ that require e at the time of injection.

Consider first the linear array L with m + 2 nodes
0,1,...,m+1, withtwo parallel edges ¢? and e} from node
ttonodei+1, for0 < i < m—1, and with an edge e, from
node m to node m + 1. Choose an ¢ < 1/(m + 2) and an
s > 2m + 1, and construct a tree 7" such that an adversary
A withrate 1 — ¢ can inject (1 —£)s packets at the leaves of
T during an interval of s steps and they all reach the root of
T in the last step of the interval. 1" can have O(m?) edges.
The graph G is obtained by connecting L and T, making the
node 0 of L the root of T'.

We now construct an adversary A with rate 1 — ¢ that
injects packets in phases of s steps each. We number the
2™ first phases from 0 to 2 — 1. For some fixed ¢ €
{0,...,2™ — 1}, let b, _1 ... bo be the m-bit binary repre-
sentation of 7. Then, in phase i the adversary injects (1 —¢)s
packets at the leaves of the subgraph 7" of G, all requiring
edges eloelt .. .efn”’_'f em, so that all of them reach node 0
in the last step of phase ¢. It also injects (1 — £)s packets
requiring only edge e;fj, forall 0 < j <m-—1.

Let us define ko = (1 — ¢)s, and k; = 2kj_; — €52/ 71
for 1 < j < m. The crucial fact is the following; the proof
is by induction on j, and we omit it.

Lemma 4.1
Forallj €{0,...,m}, leti; € {0,1,...,2™9 — 1} and
bm—j—1...bo be the (m~ j)-bit binary representation of i;.
Then, at the end of phase 27 (i; + 1) — 1 there are at least
kj packets in the system (G, A, S15) still requiring edges
bo by b
€;%€ht  Emoi
subgraph L of G.

“Yem. All these packets are in nodes of the

Theorem 4.2 At the end of phase 2™ — 1 there are at least
(2m+1)2™~ ! packets in the system (G, A, S1S) requiring
edge e, and there are at least 2™~ packets in some queue
of the system.

Proof. From Lemma 4.1 with j = m and ¢; = 0, at the end
of phase 2™ — 1 there are at least k,, packets in the nodes
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of L requiring edge e,,. Then, the theorem follows, since
by = 2" ko —mes2m—1 = g2m—1 (2—e(m+2)) > (2m+
1)2™~1. There are only 2m + 1 queues where these packets
can be held, hence some queue contains at least 2™~ ! pack-
ets. ]

Note that this construction for SIS uses an adversary of
rate 1 — ©(1/m). For FTG, it is possible to show an expo-
nential lower bound using an adversary whose rate is inde-
pendent of the size of the network.

4.2. A randomized greedy protocol with polynomial
queue size

In this section we present a randomized greedy protocol
with polynomially-bounded queues. We say that a random-
ized protocol P has polynomially-bounded queues if there is
a polynomial p(-) such that for any network &G with m edges,
any adversary A, any ¢ > 0, and any k£ > 1, the probabil-
ity that at time ¢ there are more than kp(m) packets in any
queue of the system (G, A, P) is exponential in —k.

The bound we obtain for our protocol is polynomial in
d log m; thus, for systems in which only short paths are used,
this bound is polylogarithmic in the network size.

The definition of the protocol. The protocol is actually
simple to state, and so we do this at the outset. Let A be
an adversary of rate (w, r). Let d denote the length of the
longest simple directed path and m the number of edges in
G'. Below, we will define some parameters 7', 7", and z in
terms of m, r, and d. When a packet p is injected at time
¢, it is assigned a label of value T”[ %] + A(p), where A(p)
is an integer chosen uniformly at random from the interval
[1, z]. At any edge queue, the packet with the smallest label
is advanced; this packet’s label is then incremented by 1.

The remainder of this section is devoted to defining the
parameters 7', 7", and 4 appropriately, and then analyzing
the resulting protocol.

Schedules and suffixes. The following lemma will be
useful. If X is aset of packets ina graph G, each with a fixed
path to traverse, a schedule for X is a function o giving, for
each packet p € X and each edge e in the path of p, the
time at which p crosses e. (We assume throughout that time
values are non-negative integers.) We require that no two
packets cross the same edge at the same time. The makespan
of o is the largest absorption time of any packet in X, under
the schedule o.

We say that a greedy schedule o is a suffix of o if o’ can
be obtained from o as follows. First, position each packet
p € X at some vertex on its path. Now inductively con-
struct ¢’ as follows: at a given edge e and time ¢ = 0,1,. .,
advance the packet in the queue of e that crosses e first under
.



Lemmad.3 If o’ is a suffix of o, then the makespan of ¢’
does not exceed that of o.

A static protocol. We start by presenting a randomized
(non-greedy) protocol for the static routing problem, i.e. the
problem of routing a set of NV packets, all initially in the sys-
tem, in the network G. This protocol is derived from a dis-
tributed randomized algorithm presented for this problem by
Leighton, Maggs, and Rao {13]. We will base our dynamic
algorithm on this static one.

Let first assume that we have a set of N packets to be
routed in a network G such that no packet has to traverse
a path of more that d edges (dilation) and no edge is in
more than ¢ packet paths (congestion). Leighton, Maggs,
and Rao [13] presented a distributed randomized algorithm
that routes all the packets in O(c + dlog(Nd)) steps, with
high probability. Here we slightly modify the parameters of
the algorithm so the routing takes (1 + €)c + O(d log(med))
steps, forany € > 1.

The algorithm for the static problem works as follows.
First, each packet p is assigned an integer value A(p) chosen
randomly, independently, and uniformly from [1, @%—m],
where « is a (small) constant. Let us define 3 = 1 + ¢ and
divide the routing time into intervals of g log(med) consec-
utive steps. A packet p waits in its initial queue for A(p) in-
tervals, and then traverses its path one edge per interval. We
say that the algorithm fails if more than g log(med) packets
try to cross some edge e in some interval i,

Using Chernoff bounds, one can show that if « is cho-
sen small enough, the probability that the algorithm fails
is at most (med)~!. Therefore, with probability at least
1 — (med)™1, the number of steps taken to route with the
static protocol is at most

«@c

(d+ log(med)

)—ﬁ— log(med) = fBec + @ log(med).
« o

Back to the dynamic protocol. Let us now go back
to the dynamic problem and assume an adversary A of rate
(w, 7). Let us choose a positive number § so that 1 < §% <
1/r, and then o small enough as in the preceding subsection.
We now choose 7' to be a multiple of w and large enough so
that 7' > g(8rT + d—f— log(mr1'd)). Note that we can find
such a 7" that is ©(dlog m /(1 — r)).

We picture time as being divided into blocks of length T,
and consider the set of packets X; injected in the 5*® block
of time, ¢« = 1,2,.... We would essentially like to run the
static algorithm defined above on each set X; in turn; note
that the congestion of the packets in X; is at most r7T". Thus
in the definition of the protocol at the beginning of this sec-
tion, we set u = @z‘%, and 7" > p + d. The effect of
this definition of T” is that packets in X; will always have
priority over those in X; for j > {. Let us say that X; is
successful if the set of random labels chosen for the packets
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in X;, when used in the static algorithm above, causes it to
terminate within time

B87IT > prT + %ﬁ— log(mrTd).

By the above analysis, each X is successful with probability
atleast 1 — (mrT'd)~ 1.

A best-case scenario would be the following: the packets
in X are successful and hence absorbed by time 27" (note
that the last packet in X only arrives at time T'). This gives
priority to the packets in X. The packets in X, are also suc-
cessful and hence absorbed by time 37", This gives priority
to the packets in X3, and so on.

Unfortunately, the analysis of the static algorithm shows
that there is a positive probability of any given set X; being
unsuccessful, and this is what we consider below. Let ; de-
note the time at which the last packetin X3 U XoU--- X is
absorbed under the dynamic protocol, and §; = 7 —(i+1)T.
Thus é; tells how much “behind schedule” the absorption of
the sets preceding X;1 was. We now claim the following:

Lemmad4.4 [fé; > T(1 — 1/6), and X, 11 is successful,
then 5i+1 < b — T(l - ]./,3)

Proof. Consider the set of packets in X;1 at time 7;; from
this time until they are absorbed, these packets have higher
priority than any other packet in the system. Consider the
schedule ¢’ on this set of packets defined by their current
positions and current labels. Also, consider the schedule ¢
defined by the initial labels of the packets in X;1, assum-
ing that they were all released from their sources at the same
time. The schedule ¢’ is a suffix of the schedule o; thus by
Lemma 4.3 and our assumption that X; is successful, the
packets in X;4, will be absorbed by time 7; + T'/3. Hence
Ti+1 — 7% < T'/B3, and the lemma follows. |

Finally, we can show that the protocol has polynomi-
ally bounded queues. When the random variable §; exceeds
T(1 - 1/8), it goes down by T'(1 — 1/8) with probability
atleast 1 — (mr7'd)~!; and otherwise it goes up by at most
ed < rT'd. Thus the expected change in §; is less than or
equal to

—(1 = (mrTd)~"HT(1 - 1/8) + 1/m.

It follows that the probability of é; exceeding krT'd is expo-
nential in —k.

From this it follows that, at any time ¢, the probability of
there being more than krd non-empty sets of packets X; is
exponential in —&, and hence the protocol has polynomially
bounded queues.

5. Remarks and open questions

We have classified many of the standard simple greedy
protocols known to us in terms of their universal stability.



However, it would be interesting to study other simple pro-
tocols from the point of view of stability, as well as to study
the behavior of the protocols of this paper in more detail. We
suggest the following three sets of open questions.

First, we do not know of a deterministic, distributed
queueing protocol with polynomially bounded queues. We
feel it is of considerable interest to determine whether such a
protocol exists. Given the similarities between LIS and our
randomized protocol, and the fact that we do not know of an
exponential lower bound for LIS, a specific open question
is to determine whether LIS itself is polynomially bounded.
(We also note that the randomized protocol of Section 4.2
can be converted into a deterministic, centralized protocol
with polynomially bounded queues; thus, the emphasis is on
finding a protocol that is both deterministic and distributed.)

Throughout most of this paper, our focus has been on ad-
versaries with rates arbitrarily close to 1. But it is interest-
ing to study the behavior of protocols against adversaries of
rates bounded away from 1. In Section 2.2, we showed that
LIFO and NTG can be unstable at any injection rate greater
than 0.62; a recent result of Borodin, Kleinberg, Sudan, and
Williamson 3] shows that there exist adversaries of arbitrar-
ily small positive rates that cause NTG to be unstable. How-
ever, an analogous result is not known for FIFO, and so we
can ask: does there exist arate rg > 0 such that FIFO is sta-
ble against every adversary of rate (w, ry), for every w and
every network? Similarly, does one of FTG or SIS become
polynomially bounded when the injection rate is made small
enough?

Finally — the assumption that a packet is injected with
a pre—specified path through the network is fairly standard
within the context of queueing theory; however, for packet—
routing problems, it would be interesting to consider an ad-
versarial model of adaptive routing. Here, an adversary in-
jects packets with only their destinations specified, subject
to araterestriction that, say, requires there to be a feasible in-
tegral multicommodity flow from the newly injected sources
to their destinations. The contention resolution protocol is
then free to route each packet on an arbitrary path to its desti-
nation. This model is closer to the setting of the Awerbuch—
Leighton multicommodity flow algorithm [1]; it would be
interesting to investigate these connections further.
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